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Strong commutativity preserving derivations
on Lie ideals of prime Γ-rings

Okan Arslan, Berna Arslan∗

Abstract. Let M be a Γ-ring and S ⊆ M . A mapping f : M → M
is called strong commutativity preserving on S if [f(x), f(y)]α = [x, y]α,
for all x, y ∈ S, α ∈ Γ. In the present paper, we investigate the com-
mutativity of the prime Γ-ring M of characteristic not 2 with center
Z(M) 6= (0) admitting a derivation which is strong commutativity pre-
serving on a nonzero square closed Lie ideal U of M . Moreover, we also
obtain a related result when a mapping d is assumed to be a derivation
on U satisfying the condition d(u) ◦α d(v) = u ◦α v, for all u, v ∈ U ,
α ∈ Γ.

1. Introduction

Nobusawa [13] developed the concept of a gamma ring and then Barnes
[1] weakened slightly the defining conditions for a gamma ring. After these
definitions a number of mathematicians have studied on gamma rings in the
sense of Barnes and Nobusawa and get results parallel to the ring theory
(see for example [1], [11], [9]).

Let R be any ring. The symbol [a, b] denotes ab − ba for a, b ∈ R. R is
called prime if aRb = (0) implies either a = 0 or b = 0, and R is called
semiprime if aRa = (0) implies a = 0. An additive mapping d is called a
derivation on R if

d(ab) = d(a)b+ ad(b)

holds for all a, b ∈ R.
A mapping f is said to be commutativity preserving onR if [f(a), f(b)] = 0

whenever [a, b] = 0, for all a, b ∈ R. In 1976, Watkins [14] obtained the first
result on commutativity preserving maps for a n × n matrix algebra when
n ≥ 4 and f is a monomorphism on R. Recently, the study of commutativity
preserving maps has become an active research area in ring theory (see for
example [4], [6], [8], [12] and references therein).
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Let S be a subset of R. A map f is called strong commutativity preserving
(SCP) on S if [f(a), f(b)] = [a, b], for all a, b ∈ S. Clearly, a map that is
strong commutativity preserving on a set S is also commutativity preserving
on S, but the inverse is not true in general. The notion of a strong commu-
tativity preserving map was first introduced by H.E. Bell and G. Mason [3].
Later, H.E. Bell and M.N. Daif [2] proved that if a semiprime ring R admits
a nonzero derivation which is strong commutativity preserving on a right
ideal ρ of R, then ρ ⊆ Z(R) where Z(R) is the center of R. In particular, R
is commutative if ρ = R. M. Brešar and C.R. Miers [5] characterized SCP
additive maps on a semiprime ring. In [10], Brešar and Miers’s result was
extended to Lie ideals of prime rings by J.-S. Lin and C.-K. Liu. Later,
Q. Deng and M. Ashraf [7] proved that if there exists a derivation d of a
semiprime ring R and a mapping f : I → R defined on a nonzero ideal I of R
such that [f(a), d(b)] = [a, b], for all a, b ∈ I, then R contains a nonzero cen-
tral ideal. They also showed that R is commutative when I = R. There are
lots of generalizations similar to these results can be found in the literature.

Recently, X. Xu, J. Ma and Y. Zhou [15] proved that a semiprime Γ-
ring with a strong commutativity preserving derivation on itself must be
commutative and that a strong commutativity preserving endomorphism σ
on a semiprime Γ-ring M must have the form σ(a) = a + ξ(a) (a ∈ M)
where ξ is a map from M into its center, which extends some results by Bell
and Daif to semiprime Γ-rings.

Motivated by all these results, in the present paper, we study strong
commutativity preserving derivations on a nonzero square closed Lie ideal
of prime Γ-rings and prove that if M is a prime Γ-ring of characteristic
not 2 such that its center Z(M) 6= (0) and d is a SCP derivation on a
nonzero square closed Lie ideal U of M , then U ⊆ Z(M). In particular, M
is commutative if U = M . Moreover, we also obtain the same result when
a mapping d is assumed to be a derivation on U satisfying the condition
d(u) ◦α d(v) = u ◦α v, for all u, v ∈ U , α ∈ Γ.

2. Preliminaries

Before giving our results, we first present some preliminary definitions.
In this paper, M will represent a Γ-ring in the sense of Barnes [1] unless
otherwise stated.

An additive subgroup K of a Γ-ring M is called a left (resp. right) ideal
of M if MΓK ⊆ K (resp. KΓM ⊆ K). A left ideal K of a Γ-ring M is
called an ideal of M if it is also a right ideal of M . The set of all elements
a satisfying aαb = bαa for all b ∈M and α ∈ Γ is called the center of M .

A Γ-ring M is said to be prime if aΓMΓb = (0) for a, b ∈ M implies
that a = 0 or b = 0. An additive mapping d is called a derivation on M if
d(aαb) = d(a)αb+ aαd(b), for all a, b ∈M and α ∈ Γ.



Okan Arslan, Berna Arslan 65

Let M be a Γ-ring and a, b ∈ M , α ∈ Γ. The commutator of a and b
with respect to α is defined as the element aαb− bαa and denoted by [a, b]α.
According to this definition we have the following equations,

[aαb, c]β = [a, c]βαb+ aα[b, c]β + aαcβb− aβcαb,(1)

[a, bαc]β = [a, b]βαc+ bα[a, c]β + bβaαc− bαaβc,(2)

where a, b, c ∈M , α, β ∈ Γ. Similarly, the anti-commutator of a and b with
respect to α is defined as the element aαb + bαa and denoted by a ◦α b.
According to this definition we have the following equations,

(aαb) ◦β c = aα(b ◦β c)− [a, c]βαb+ aαcβb− aβcαb
= (a ◦β c)αb+ aα[b, c]β + aβcαb− aαcβb,

a ◦β (bαc) = (a ◦β b)αc− bα[a, c]β + bβaαc− bαaβc
= bα(a ◦β c) + [a, b]βαc+ bαaβc− bβaαc,

where a, b, c ∈M , α, β ∈ Γ.
An additive subgroup U of a Γ-ring M is called a Lie ideal if [u,m]α ∈ U ,

for all u ∈ U , m ∈ M and α ∈ Γ. A Lie ideal U of M is said to be a
square closed Lie ideal of M , if uαu ∈ U for all u ∈ U and α ∈ Γ. Clearly,
uαv + vαu ∈ U , for all u, v ∈ U , α ∈ Γ. Similarly, we have uαv − vαu ∈ U .
Moreover, by using these relations, we get 2uαv ∈ U which will be used in
the whole paper frequently.

A map f from a Γ-ring M into itself is called strong commutativity pre-
serving (SCP) on a subset S of M if [f(a), f(b)]α = [a, b]α holds for all
a, b ∈ S and α ∈ Γ.

3. The Results

First, we work on SCP derivations on Lie ideals of prime Γ-rings. The
following lemma will play an crucial role in the proofs of our main theorems.

Lemma 3.1. Let M be a prime Γ-ring and Z(M) 6= (0). Then the equations

[aαb, c]β = [a, c]βαb+ aα[b, c]β,

[a, bαc]β = [a, b]βαc+ bα[a, c]β

hold for all a, b, c ∈M , α, β ∈ Γ.

Proof. For any c ∈ M , α, β ∈ Γ, the symbol [α, β]c denotes αcβ − βcα.
Then, the commutator formulas in (1) and (2) become

[aαb, c]β = [a, c]βαb+ aα[b, c]β + a[α, β]cb(3)

and

[a, bαc]β = [a, b]βαc+ bα[a, c]β + b[β, α]ac,

for all a, b, c ∈M , α, β ∈ Γ.



66 SCP derivations on Lie ideals of prime Γ-rings

Since Z(M) 6= (0), there exists a nonzero element x in Z(M). Thus,

xγyδaαcβb = yγxδaαcβb = yγaδxαcβb

= yγaδcαxβb = yγaδcαbβx

= yγaδxβcαb = yγxδaβcαb

= xγyδaβcαb,

for all a, b, c, y ∈M , α, β, γ, δ ∈ Γ. Then we have that

(4) xγyδa[α, β]cb = 0,

for all a, b, c, y ∈ M , α, β, γ, δ ∈ Γ. Multiplying the two sides of (3) by
xγyδ from the left hand side, and then comparing with (4) we get for all
a, b, c, y ∈M , α, β, γ, δ ∈ Γ

xγyδ[aαb, c]β = xγyδ[a, c]βαb+ xγyδaα[b, c]β.

That is xΓMΓ([aαb, c]β − [a, c]βαb − aα[b, c]β) = 0, for all a, b, c ∈ M ,
α, β ∈ Γ. Since M is prime and x is nonzero, we have

[aαb, c]β − [a, c]βαb− aα[b, c]β = 0,

for all a, b, c ∈M , α, β ∈ Γ. For the second equation, one can use the same
method above, and this completes the proof. �

Now, we can give a similar result for the anti-commutator formulas of
Γ-rings.

Lemma 3.2. Let M be a prime Γ-ring in the sense of Barnes and Z(M) 6= (0).
Then the equations

(aαb) ◦β c = aα(b ◦β c)− [a, c]βαb

= (a ◦β c)αb+ aα[b, c]β,

a ◦β (bαc) = (a ◦β b)αc− bα[a, c]β

= bα(a ◦β c) + [a, b]βαc

hold for all a, b, c ∈M , α, β ∈ Γ.

Proof. It can be proved by using the techniques of Lemma 3.1. �

We need the following results to prove our main theorems.

Lemma 3.3. Let M be a prime Γ-ring of characteristic not 2 with the center
Z(M) 6= (0) and U be a Lie ideal of M . If U * Z(M), then there exists an
ideal K of M such that [K,M ]Γ ⊆ U but [K,M ]Γ * Z(M).

Proof. First, we show that the Lie product of U by itself is different from
zero. Suppose that [U,U ]Γ = (0). Then we have [a, [a,m]α]β = 0, for all
a ∈ U , m ∈ M and α, β ∈ Γ. Replacing m by mγx for γ ∈ Γ and x ∈ M ,
we get

(5) [a,m]β γ [a, x]α + [a,m]α γ [a, x]β = 0.
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Now, replacing β by α in (5) we have [a,m]α γ [a, x]α = 0, for all a ∈ U ,
m,x ∈ M and α, γ ∈ Γ. Replacing x by yδx for y ∈ M and δ ∈ Γ in the
last equation, we get [a,m]α ΓMΓ [a, x]α = (0), for all a ∈ U , m,x ∈ M
and α ∈ Γ. Therefore, we have U ⊆ Z(M) since M is prime. But this
contradicts with the hypothesis of the theorem. Hence, there exist u, v ∈ U
and β ∈ Γ such that [u, v]β 6= 0.

Let K := MΓ [u, v]β ΓM and T (U) := {x ∈ M | [x,M ]Γ ⊆ U}. Then, it
is clear that K 6= (0) is an ideal of M ; T (U) is a Lie ideal and a subring of
M . Moreover, U ⊆ T (U). Since [u, vγm]β = [u, v]β γm + vγ [u,m]β for all
m ∈M and γ ∈ Γ, we get [u, v]β ΓM ⊆ T (U). Hence,[

[u, v]β αm,n
]
γ
∈ T (U),

for all n,m ∈M and α, γ ∈ Γ. Expanding this we get nγ [u, v]β αm ∈ T (U)

for all n,m ∈ M and α, γ ∈ Γ. Then, we have MΓ [u, v]β ΓM = K ⊆ T (U)

which yields to [K,M ]Γ ⊆ U .
Now, suppose [K,M ]Γ ⊆ Z(M). Therefore, we have [K, [K,M ]Γ]Γ = (0)

and using the same argument above we get K ⊆ Z(M). Let x ∈ M . Then
nαkγm ∈ K for all n,m ∈ M , k ∈ K and α, γ ∈ Γ. Since K ⊆ Z(M)
we have [x, nαkγm]δ = 0. Expanding this we get KΓMΓ [x,M ]Γ = (0).
Therefore, x ∈ Z(M) since M is prime and K 6= (0). But this contradicts
with U * Z(M). This completes the proof. �

Lemma 3.4. Let M be a prime Γ-ring of characteristic not 2 with the center
Z(M) 6= (0) and U be a Lie ideal of M . If U * Z(M) and a, b ∈ M such
that aΓUΓb = (0), then either a = 0 or b = 0.

Proof. By Lemma 3.3, there exists an ideal K of M such that [K,M ]Γ ⊆ U
but [K,M ]Γ * Z(M) . Let u ∈ U , k ∈ K, m ∈ M and α, β, γ ∈ Γ. Then,
we have

[kαaβu,m]γ ∈ [K,M ]Γ ⊆ U.
It follows from that

0 = aλ[kαaβu,m]γεb = aλkαaβ[u,m]γεb+ aλ[kαa,m]γβuεb

= aλkαaγmβuεb− aλmγkαaβuεb
= aλkαaγmβuεb,

for all u ∈ U , k ∈ K, m ∈ M and α, β, γ, λ, ε ∈ Γ. Therefore, we get
aΓKΓa = (0) or UΓb = (0) since M is prime. In the first case, we see that
a must be zero by using the primeness of M . In the second case, we get

[u,m]αγb = 0,

for all u ∈ U , m ∈M and α, γ ∈ Γ. Expanding this we have

[uγb,m]α − uγ[b,m]α = 0,
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that is uγmαb = 0, for all u ∈ U , m ∈ M and α, γ ∈ Γ. Therefore, b = 0
since M is prime and U 6= (0). �

Lemma 3.5. Let M be a prime Γ-ring with the center Z(M) 6= (0) and
x ∈ M . If a ∈ Z(M) and aγx ∈ Z(M) for all γ ∈ Γ, then a = 0 or
x ∈ Z(M).

Proof. Suppose that a 6= 0. Since aγx ∈ Z(M), we have [aγx,m]δ = 0 for
all m ∈ M and δ, γ ∈ Γ. Expanding this we get aγ[x,m]δ = 0. Replacing
m by mβn for n ∈ M and β ∈ Γ we conclude that x ∈ Z(M) since M is
prime. This completes the proof. �

Lemma 3.6. Let M be a prime Γ-ring of characteristic not 2 with the center
Z(M) 6= (0) and U be a Lie ideal of M . If [U,U ]Γ ⊆ Z(M), then U ⊆ Z(M).

Proof. By hypothesis we have [u, [u, x]α]β ∈ Z(M) for all u ∈ U , x ∈M and
α, β ∈ Γ. Since

[u, [u, x]α]β γu = [u, [u, x]α γu]β = [u, [u, xγu]α]β

and [u, [u, xγu]α]β ∈ [U,U ]Γ, we have [u, [u, x]α]β γu ∈ Z(M). Therefore, we
get [u, [u, x]α]β = 0 or u ∈ Z(M) by Lemma 3.5. Now, let [u, [u, x]α]β = 0

for all x ∈M , α, β ∈ Γ and for some u ∈ U . Replacing x by xγm we get

(6) [u, x]βγ[u,m]α + [u, x]αγ[u,m]β = 0,

for all x,m ∈ M and α, β, γ ∈ Γ. Replacing β by α in the equation (6) we
get [u, x]αγ[u,m]α = 0 sinceM is a Γ-ring of characteristic not 2. Replacing
m bymδn for n ∈M , δ ∈ Γ in the last equation, we conclude that u ∈ Z(M)
since M is prime. Consequently, we see that U must be a subset of Z(M).

�

Theorem 3.1. Let M be a prime Γ-ring of characteristic not 2 and U be a
nonzero square closed Lie ideal of M . If d is a SCP derivation on U , then
U ⊆ Z(M) or Z(M) = (0).

Proof. Suppose that Z(M) 6= (0). We have [d(x), d(y)]α = [x, y]α for all
x, y ∈ U and α ∈ Γ by hypothesis. Replacing y by 2yβz for z ∈ U and
β ∈ Γ, we get

[d(x), d(2yβz)]α = [x, 2yβz]α,

for all x, y, z ∈ U and α, β ∈ Γ. By applying Lemma 3.1, we expand the last
equation and we get

(7) d(y)β[d(x), z]α + [d(x), y]αβd(z) = 0,

since M is a Γ-ring of characteristic not 2. Replacing z by 2zγt for z, t ∈ U
and γ ∈ Γ in the equation (7) we obtain that

d(y)β[d(x), z]αγt+ d(y)βzγ[d(x), t]α + [d(x), y]αβd(z)γt

+[d(x), y]αβzγd(t) = 0,(8)
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since M is a Γ-ring of characteristic not 2. Multiplying the two sides of (7)
by γt from the right hand side, we have

(9) d(y)β[d(x), z]αγt+ [d(x), y]αβd(z)γt = 0,

for all x, y, z, t ∈ U and α, β, γ ∈ Γ. Comparing (9) with (8), we have that

d(y)βzγ[d(x), t]α + [d(x), y]αβzγd(t) = 0,

for all x, y, z, t ∈ U and α, β, γ ∈ Γ. Since U is a nonzero square closed Lie
ideal of M , we have [U,U ]Γ is a nonzero square closed Lie ideal of M , too.
Writing t = d(x) for x ∈ [U,U ]Γ, we obtain that

(10) [d(x), y]αβzγd
2(x) = 0,

for all y, z ∈ U , x ∈ [U,U ]Γ and α, β, γ ∈ Γ. If we replace y by d(y) for
y ∈ [U,U ]Γ in the equation (10), we obtain [x, y]αΓUΓd2(x) = (0) for all
x, y ∈ [U,U ]Γ, and α ∈ Γ since d is SCP on U . Therefore,

[x, y]αβ2[m, z]αΓUΓ[x, y]αβ2[m, z]α = (0),

since
[x, y]αΓUΓ[d2(x), d2(y)]αβ2[m, z]α = (0),

for all x, y ∈ [U,U ]Γ, m ∈ M , z ∈ U and α, β ∈ Γ. Since M is a Γ-ring of
characteristic not 2, we have [x, y]αβ[m, z]α = 0 by Lemma 3.4. Replacing
m by mγt for t ∈M and γ ∈ Γ we get

[x, y]αβmγ[t, z]α = 0,

for all x, y ∈ [U,U ]Γ, m, t ∈M , z ∈ U and α, β, γ ∈ Γ. By the primeness of
the Γ-ring M , we get either [x, y]α = 0 or [t, z]α = 0, for all x, y ∈ [U,U ]Γ,
z ∈ U , t ∈ M and α ∈ Γ. In the second case, we see that z ∈ Z(M) that is
U ⊆ Z(M). In the first case, using Lemma 3.6, we have [U,U ]Γ ⊆ Z(M).
Consequently, applying Lemma 3.6 again, we get that U ⊆ Z(M) which
completes the proof. �

In particular, if we take U = M , then Theorem 3.1 gives a commutativity
criterion as follows.

Corollary 3.1. Let M be a prime Γ-ring of characteristic not 2 and d
be a derivation of M . If Z(M) 6= (0) and d is SCP on M , then M is
commutative.

Since we can use the similar techniques of Theorem 3.1, we can obtain
the following theorems which partially generalize the result of Bell and Daif
to prime Γ-rings.

Theorem 3.2. Let M be a prime Γ-ring of characteristic not 2 and U be
a nonzero square closed Lie ideal of M . If [d(x), d(y)]α = −[x, y]α for all
x, y ∈ U and α ∈ Γ, then U ⊆ Z(M) or Z(M) = (0).

Proof. It can be proved easily by using the same method in Theorem 3.1. �
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Corollary 3.2. Let M be a prime Γ-ring of characteristic not 2 and d be
a derivation of M . If Z(M) 6= (0) and [d(x), d(y)]α = −[x, y]α for all
x, y ∈M , α ∈ Γ, then M is commutative.

Theorem 3.3. Let M be a prime Γ-ring of characteristic not 2 and U be
a nonzero square closed Lie ideal of M . If d is a derivation of M such
that d(x) ◦α d(y) = x ◦α y for all x, y ∈ U and α ∈ Γ, then U ⊆ Z(M) or
Z(M) = (0).

Proof. Suppose that Z(M) 6= (0). By the hypothesis we obtain that

(11) d(x) ◦α d(y)− x ◦α y = 0,

for all x, y ∈ U and α ∈ Γ. Replacing x by 2xβz for z ∈ U , β ∈ Γ in the
equation (11) we get

(12) d(x)β[z, d(y)]α − [x, d(y)]αβd(z) + 2xβyαz = 0,

sinceM is a Γ-ring of characteristic not 2. Taking 2zγx for z in the equation
(12) we have

d(x)β[z, d(y)]αγx+ d(x)βzγ[x, d(y)]α − [x, d(y)]αβd(z)γx

−[x, d(y)]αβzγd(x) + 2xβyαzγx = 0,(13)

for all x, y, z ∈ U , α, β, γ ∈ Γ. Multiplying the two sides of (12) by γx from
the right hand side, we get

(14) d(x)β[z, d(y)]αγx− [x, d(y)]αβd(z)γx+ 2xβyαzγx = 0,

for all x, y, z ∈ U and α, β, γ ∈ Γ. If we compare (13) and (14), we have
that

(15) d(x)βzγ[x, d(y)]α − [x, d(y)]αβzγd(x) = 0,

for all x, y, z ∈ U and α, β, γ ∈ Γ. Replacing z by 2zσ[x, d(y)]α for y ∈ [U,U ]Γ
and σ ∈ Γ in the equation (15) we get

(16) d(x)βzσ[x, d(y)]αγ[x, d(y)]α − [x, d(y)]αβzσ[x, d(y)]αγd(x) = 0,

since M is a Γ-ring of characteristic not 2. Taking σ for γ in (15) we have

(17) d(x)βzσ[x, d(y)]α = [x, d(y)]αβzσd(x).

If we use the equation (17) in the equation (16) we get

[x, d(y)]αβzσd(x)γ[x, d(y)]α = [x, d(y)]αβzσ[x, d(y)]αγd(x)

and so

(18) [x, d(y)]αβzσ[d(x), [x, d(y)]α]γ = 0,

for all x, z ∈ U , y ∈ [U,U ]Γ and α, β, γ, σ ∈ Γ. Taking β = γ in (18), we get

(19) [x, d(y)]αγzσ[d(x), [x, d(y)]α]γ = 0,
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for all x, z ∈ U , y ∈ [U,U ]Γ and α, γ, σ ∈ Γ. Multiplying the equation (19)
on the left by d(x)γ for x ∈ [U,U ]Γ, we have

(20) d(x)γ[x, d(y)]αγzσ[d(x), [x, d(y)]α]γ = 0.

Taking 2d(x)γz for z in (19) we obtain that

(21) [x, d(y)]αγd(x)γzσ[d(x), [x, d(y)]α]γ = 0,

for all z ∈ U , x, y ∈ [U,U ]Γ and α, γ, σ ∈ Γ since M is a Γ-ring of charac-
teristic not 2. Subtracting (21) from (20) we see that

[d(x), [x, d(y)]α]γγzσ[d(x), [x, d(y)]α]γ = 0,

for all z ∈ U , x, y ∈ [U,U ]Γ and α, γ, σ ∈ Γ. Therefore, by Lemma 3.4 we
have that

(22) [d(x), [x, d(y)]α]γ = 0,

for all x, y ∈ [U,U ]Γ and α, γ ∈ Γ. Replacing z by x for x ∈ [U,U ]Γ and β = γ
in (12) and using the equation (22) we conclude that xΓ[U,U ]ΓΓx = (0) for
all x ∈ [U,U ]Γ since M is a Γ-ring of characteristic not 2. We know that
[U,U ]Γ is a nonzero square closed Lie ideal of M . So by using Lemma
3.4 we get either x = 0 for all x ∈ [U,U ]Γ or [U,U ]Γ ⊆ Z(M). The first
case contradicts with the hypothesis [U,U ]Γ 6= (0). Then we have that
[U,U ]Γ ⊆ Z(M). Hence, applying Lemma 3.6 we obtain that U ⊆ Z(M).
This completes the proof. �

Corollary 3.3. Let d be a derivation of a prime Γ-ring M of characteristic
not 2. If d(x) ◦α d(y) = x ◦α y for all x, y ∈ M , α ∈ Γ and Z(M) 6= (0),
then M is commutative.

Theorem 3.4. Let M be a prime Γ-ring of characteristic not 2 and U be
a nonzero square closed Lie ideal of M . If d is a derivation of M such
that d(x) ◦α d(y) = −(x ◦α y) for all x, y ∈ U , α ∈ Γ, then U ⊆ Z(M) or
Z(M) = (0).

Proof. Suppose that Z(M) 6= (0). By the hypothesis we have that

(23) d(x) ◦α d(y) + x ◦α y = 0,

for all x, y ∈ U and α ∈ Γ. Replacing x by 2xβz for z ∈ U , β ∈ Γ in the
equation (23) we get

(24) d(x)β[z, d(y)]α − [x, d(y)]αβd(z) + 2xβzαy = 0,

sinceM is a Γ-ring of characteristic not 2. Taking 2zγx for x in the equation
(24) we have

d(z)γxβ[z, d(y)]α + zγd(x)β[z, d(y)]α − [z, d(y)]αγxβd(z)

−zγ[x, d(y)]αβd(z) + 2zγxβzαy = 0.(25)

Multiplying the two sides of (24) by zγ from the left hand side, we get

(26) zγd(x)β[z, d(y)]α − zγ[x, d(y)]αβd(z) + 2zγxβzαy = 0,
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for all x, y, z ∈ U and α, β, γ ∈ Γ. If we compare (25) and (26), we have
that

(27) d(z)γxβ[z, d(y)]α − [z, d(y)]αγxβd(z) = 0,

for all x, y, z ∈ U and α, β, γ ∈ Γ. Replacing x by 2xσ[z, d(y)]α for y ∈ [U,U ]Γ
and σ ∈ Γ in the equation (27) we get

(28) d(z)γxσ[z, d(y)]αβ[z, d(y)]α − [z, d(y)]αγxσ[z, d(y)]αβd(z) = 0,

since M is a Γ-ring of characteristic not 2. Taking σ for β in (27) we have

(29) d(z)γxσ[z, d(y)]α = [z, d(y)]αγxσd(z).

If we use the equation (29) in the equation (28) we get

[z, d(y)]αγxσd(z)β[z, d(y)]α = [z, d(y)]αγxσ[z, d(y)]αβd(z)

and so

(30) [z, d(y)]αγxσ[d(z), [z, d(y)]α]β = 0,

for all x, z ∈ U , y ∈ [U,U ]Γ and α, β, γ, σ ∈ Γ. Taking β = γ in (30), we get

(31) [z, d(y)]αγxσ[d(z), [z, d(y)]α]γ = 0,

for all x, z ∈ U , y ∈ [U,U ]Γ and α, γ, σ ∈ Γ. Multiplying the equation (31)
on the left by d(z)γ for z ∈ [U,U ]Γ, we have

(32) d(z)γ[z, d(y)]αγxσ[d(z), [z, d(y)]α]γ = 0.

Taking 2d(z)γx for x in (31) we obtain that

(33) [z, d(y)]αγd(z)γxσ[d(z), [z, d(y)]α]γ = 0,

for all x ∈ U , y, z ∈ [U,U ]Γ and α, γ, σ ∈ Γ since M is a Γ-ring of charac-
teristic not 2. Subtracting (33) from (32) we see that

[d(z), [z, d(y)]α]γγxσ[d(z), [z, d(y)]α]γ = 0,

for all x ∈ U , y, z ∈ [U,U ]Γ and α, γ, σ ∈ Γ. Therefore, by Lemma 3.4 we
have that

[d(z), [z, d(y)]α]γ = 0,

for all y, z ∈ [U,U ]Γ and α, γ ∈ Γ. Then, the proof is completed by using
the similar steps in the equation (22) in Theorem 3.3. �

Corollary 3.4. Let d be a derivation of a prime Γ-ring M of characteristic
not 2. If d(x) ◦α d(y) = −(x ◦α y) for all x, y ∈M , α ∈ Γ and Z(M) 6= (0),
then M is commutative.
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